Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic.

نویسندگان

  • Luís M Mateos
  • Efrén Ordóñez
  • Michal Letek
  • José A Gil
چکیده

Arsenic is an extremely toxic metalloid that, when present in high concentrations, severely threatens the biota and human health. Arsenic contamination of soil, water, and air is a global growing environmental problem due to leaching from geological formations, the burning of fossil fuels, wastes generated by the gold mining industry present in uncontrolled landfills, and improper agriculture or medical uses. Unlike organic contaminants, which are degraded into harmless chemical species, metals and metalloids cannot be destroyed, but they can be immobilized or transformed into less toxic forms. The ubiquity of arsenic in the environment has led to the evolution in microbes of arsenic defense mechanisms. The most common of these mechanisms is based on the presence of the arsenic resistance operon (ars), which codes for: (i) a regulatory protein, ArsR; (ii) an arsenite permease, ArsB; and (iii) an enzyme involved in arsenate reduction, ArsC. Corynebacterium glutamicum, which is used for the industrial production of amino acids and nucleotides, is one of the most arsenic-resistant microorganisms described to date (up to 12 mM arsenite and >400 mM arseniate). Analysis of the C. glutamicum genome revealed the presence of two complete ars operons (ars1 and ars2) comprising the typical three-gene structure arsRBC, with an extra arsC1 located downstream from arsC1 (ars1 operon), and two orphan genes (arsB3 and arsC4). The involvement of both ars operons in arsenic resistance in C. glutamicum was confirmed by disruption and amplification of those genes. The strains obtained were resistant to up to 60 mM arsenite, one of the highest levels of bacterial resistance to arsenite so far described. Using tools for the genetic manipulation of C. glutamicum that were developed in our laboratory, we are attempting to obtain C. glutamicum mutant strains able to remove arsenic from contaminated water.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fermentative Production of Lysine by Corynebacterium glutamicum from Different Carbon Sources

Production of lysine by Corynebacterium glutamicum (PTCC 1532) from different agricultural by-products (molasses and pulpy waste date) was compared to glucose as raw materials. For this purpose, ammonium sulphate was selected as a constant nitrogen source. The effect of different nitrogen sources was also investigated with glucose as a constant carbon source. The production of L-lysine was exam...

متن کامل

Development of A Novel Gene Expression System for Secretory Production of Heterologous Proteins via the General Secretory (Sec) Pathway in Corynebacterium glutamicum

Background: Corynebacterium glutamicum (C. glutamicum) is a potential host for the secretory production of the heterologous proteins. However, to this date few secretion-type gene expression systems in C. glutamicum have been developed, which limit applications of C. glutamicum in a secretory production of the heterologous proteins.Objectives: In this stu...

متن کامل

Genotyping of amino acid-producing Corynebacterium glutamicum strains based on multi-locus sequence typing (MLST) scheme

Background: Confusing parental information may hinder to dissect mechanisms of amino acid hyper-producing Corynebacterium glutamicum strains. Thus, an efficient method for genotyping of the C. glutamicum is heavily called. Results: Multi-locus sequence typing (MLST) is currently the most popular molecular typing technique. But currently this method is not available for C. glutamicum. In this st...

متن کامل

DivIVA is required for polar growth in the MreB-lacking rod-shaped actinomycete Corynebacterium glutamicum.

The actinomycete Corynebacterium glutamicum grows as rod-shaped cells by zonal peptidoglycan synthesis at the cell poles. In this bacterium, experimental depletion of the polar DivIVA protein (DivIVA(Cg)) resulted in the inhibition of polar growth; consequently, these cells exhibited a coccoid morphology. This result demonstrated that DivIVA is required for cell elongation and the acquisition o...

متن کامل

Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum

l-Histidine biosynthesis is an ancient metabolic pathway present in bacteria, archaea, lower eukaryotes, and plants. For decades l-histidine biosynthesis has been studied mainly in Escherichia coli and Salmonella typhimurium, revealing fundamental regulatory processes in bacteria. Furthermore, in the last 15 years this pathway has been also investigated intensively in the industrial amino acid-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International microbiology : the official journal of the Spanish Society for Microbiology

دوره 9 3  شماره 

صفحات  -

تاریخ انتشار 2006